
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/373358188

SparkEdgeEmu: An Emulation Framework for Edge-Enabled Apache Spark

Deployments

Chapter · August 2023

DOI: 10.1007/978-3-031-39698-4_11

CITATIONS

0
READS

49

4 authors:

Moysis Symeonidis

University of Cyprus

19 PUBLICATIONS 151 CITATIONS

SEE PROFILE

Demetris Trihinas

University of Cyprus

41 PUBLICATIONS 500 CITATIONS

SEE PROFILE

George Pallis

University of Cyprus

125 PUBLICATIONS 3,802 CITATIONS

SEE PROFILE

Marios D. Dikaiakos

University of Cyprus

235 PUBLICATIONS 3,890 CITATIONS

SEE PROFILE

All content following this page was uploaded by Marios D. Dikaiakos on 27 September 2023.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/373358188_SparkEdgeEmu_An_Emulation_Framework_for_Edge-Enabled_Apache_Spark_Deployments?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/373358188_SparkEdgeEmu_An_Emulation_Framework_for_Edge-Enabled_Apache_Spark_Deployments?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Moysis-Symeonidis?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Moysis-Symeonidis?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Cyprus?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Moysis-Symeonidis?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Demetris-Trihinas?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Demetris-Trihinas?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Cyprus?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Demetris-Trihinas?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Pallis?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Pallis?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Cyprus?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/George-Pallis?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marios-Dikaiakos?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marios-Dikaiakos?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Cyprus?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marios-Dikaiakos?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marios-Dikaiakos?enrichId=rgreq-8c21c9e57777ccaa64030eb1e0d9b822-XXX&enrichSource=Y292ZXJQYWdlOzM3MzM1ODE4ODtBUzoxMTQzMTI4MTE5Mjk5NDYxM0AxNjk1ODE3NTEyNTA2&el=1_x_10&_esc=publicationCoverPdf

SparkEdgeEmu: An Emulation Framework for
Edge-enabled Apache Spark Deployments

Moysis Symeonides1, Demetris Trihinas2, George Pallis1, and Marios D.
Dikaiakos1

1 Department of Computer Science, University of Cyprus
{msymeo03, pallis, mdd}@ucy.ac.cy

2 Department of Computer Science, University of Nicosia
trihinas.d@unic.ac.cy

Abstract. Edge Computing emerges as a stable and efficient solution
for IoT data processing and analytics. With big data distributed engines
to be deployed on edge infrastructures, users seek solutions to evaluate
the performance of their analytics queries. In this paper, we introduce
SparkEdgeEmu, an interactive framework designed for researchers and
practitioners who need to inspect the performance of Spark analytic jobs
without the edge topology setup burden. SparkEdgeEmu provides: (i) pa-
rameterizable template-based use cases for edge infrastructures, (ii) real-
time emulated environments serving ready-to-use Spark clusters, (iii) a
unified and interactive programming interface for the framework’s execu-
tion and query submission, and (vi) utilization metrics from the under-
lying emulated topology as well as performance and quantitative metrics
from the deployed queries. We evaluate the usability of our framework
in a smart city use case and extract useful performance hints for the
Apache Spark code execution.

Keywords: Edge Computing · Internet of Things · Big Data.

1 Introduction

The proliferation of the Internet of Things (IoT) has led to an explosion in instal-
lations of IoT devices and in the amount of IoT-generated data. Recent reports
estimate that by 2025 IoT will comprise around 41 billion devices in operation
worldwide, producing on a daily basis about 80ZB of data [9]. However, typi-
cal IoT devices do not have adequate storage capacity and processing power to
perform analytics tasks. Thus, application designers and operators recognized
the need to offload IoT data into more powerful computing platforms placed at
the proximity of IoT data sources, to cope with processing, storage, and latency
requirements of “earthbound” applications. This has led to the emergence of
the Edge Computing paradigm, which offers in-place processing, data transfer
minimization, and on-time result calculation by deploying analytic tasks on edge-
driven compute nodes. A typical edge node, however, does not have the capacity
to host and run demanding analytics jobs that arise in many application use

2 M. Symeonides et al.

cases. Therefore, big data engines, like Apache Spark, provide implementations,
which distribute computation and data to multiple edge nodes, and take ad-
vantage of their aggregate capacity. These implementations hide the complexity
arising from machine communication, task scheduling, fault tolerant operation,
etc., behind higher-level abstractions for performing queries on IoT data [20].
However, predicting the resource needs and the performance behavior of analytic
queries running on edge nodes that are deployed on a wide geographic area, ex-
posed to possibly sub-optimal environmental conditions with limited computing
resources and often unstable network connectivity, is a challenging endeavor [17,
19]. It is expensive and time-consuming to develop, configure, test, and repro-
duce the conditions of large-scale, physical testbeds; consequently, testing and
performance evaluation become major barriers for edge processing.

To alleviate the difficulties of a physical testbed, users attempt to evaluate
the performance of their tasks via emulation frameworks [11, 3], which mimic
the conditions and effects of a physical deployment on the deployed services.
Even if emulators achieve near-to-real conditions for the deployed services, users
have to describe, containerize, and configure these services. Furthermore, emu-
lation frameworks usually provide modeling toolkits that users require to define
every emulated node and its properties manually, including processing capabil-
ities, network configurations, deployed services, etc. Then, users need to evalu-
ate the performance of the submitted exploratory queries on scattered datasets
by extracting quantitative and utilization metrics from the deployed big data
distributed engine and the underlying infrastructure [13]. Considering that the
majority of analytic platform users are data scientists, they are not aware of
distributed engine deployment, configuration, and monitoring.

To address these challenges, we introduce SparkEdgeEmu, a framework for
interactive performance and bottleneck analysis of Apache Spark jobs deployed
over emulated edge testbeds. Users only need to fulfill use case templates, leaving
the framework to bootstrap the emulated testbed, deploy Spark services, inject
the respective datasets, and capture monitoring metrics for post-execution per-
formance analysis. The main contributions of this work are: (i) the Modeling
Abstractions for parameterizable templates of scalable edge topologies, through
which users select the respective use case and its parameters, as well as the topol-
ogy’s compute and network resources, (ii) an Open-source Implementation3 of
the SparkEdgeEmu that translates the use case model to a large-scale emulated
Apache Spark testbed, providing multi-host scalability, inherited from its under-
lying emulator [19], query- and topology-level metrics for post-experiment per-
formance evaluation and bottleneck identification analysis, which consequently
helps in the query optimization process, and (iii) an Experimental Study of an-
alytic queries executed on a city-scale testbed that uncovers hidden insights of
the queries performance and the Apache Spark footprint.

The rest of the paper is structured as follows: Section 2 describes the related
work. Sections 3 and 4 show the framework and its implementation details, re-
spectively. Section 5 presents the experiments and Section 6 concludes the paper.

3 https://www.github.com/UCY-LINC-LAB/SparkEdgeEmu

Title Suppressed Due to Excessive Length 3

2 Related Work

To evaluate the performance of a system, users typically embrace benchmark-
ing suites that provide both workloads and monitoring capabilities. There is a
plethora of benchmarking tools related to big data analytics. For instance, Yahoo
YCSB [7] provides a range of diverse tools for DBMS benchmarking. Moreover,
SparkBench [15] introduces ML, graph computation, SQL queries, and stream-
ing workloads for Apache Spark. A study of latency and throughput between
big data streaming engines is presented in [6], while Karimov et al. [13] provide
a novel definition for the latency of stateful operators, a method to measure it
and decouple the underlying systems from the driver that controls the exper-
imentation to have fair results. An edge-oriented and automated approach is
proposed in [10]. The authors introduce BenchPilot, a framework that is capa-
ble of performing repeatable and reproducible experiments on Edge micro-DCs.
Even if the benchmarking studies alleviate the difficulties of analytic workload
creation and experimentation, they consider an already deployed edge infrastruc-
ture, which is sometimes unrealistic during the design phase.

To create realistic testing conditions without facing the cost and the config-
uration effort of a real edge cluster, users turn to emulation frameworks. Frame-
works like FogBed [8] and EmuEdge [22] notably expand network emulators
(e.g., MiniNet [14]) to provide fog/edge resource and network heterogeneity. In-
terestingly, Beilharz et al. introduce Marvis [3], a hybrid testbed that combines
simulated events with emulated infrastructure for evaluating distributed IoT ap-
plications. The system integrates the ns-3 network simulator with virtualization
technologies and domain-specific simulators (e.g., traffic simulators). However,
these solutions inherit the restrictions of the network emulators like strict mod-
eling (i.e., the configuration of routers, gateways, IP masks) and limited scalabil-
ity. To tackle these issues, a series of emulation frameworks introduce distributed
cloud technologies via multi-host overlay networks and virtualization technolo-
gies. For example, MockFog [11] is a fog emulator that is deployable on AWS
and OpenStack clusters, provides the required heterogeneity, and enables users
to inject network faults at run-time. Moreover, other container-based Fog and
5G emulation frameworks [16, 19, 21] offer multi-host scalability, realistic emula-
tion via ad-hoc topology updates, automated service deployment, and emulation
monitoring. However, none of the above solutions are focused on Spark analytic
queries, leaving users to handle the barrier of containerization, configuration,
deployment, and monitoring of the distributed processing engines.

3 System Overview

The time-consuming infrastructure setup required for studying analytic queries’
performance on the edge increases product time-to-market and turns analysts’
attention away from the actual purpose of query performance evaluation. To
ease understanding, let us consider a use case where a data scientist wants to
evaluate the performance of his/her analytic queries on a realistic smart city

4 M. Symeonides et al.

SparkEdgeEmu Library

Spark
Dockerized

Services Repo

Edge Deployment
Composer

Post-query
Analysis

Infrastructure
Use Case
Generator

Deployment
Phase

Emulator Connector

Emulated Infrastructure

Deploy/
Undeploy

Monitoring
Metrics

Interactive Programming Interface

Engine Interactive
Interface

Timer

Interactive
Processing

Performance
Evaluation

Preferences

Query

Results Monitoring
Report

Time-range

 Spark Cluster

Master

Worker
Worker

Worker

WorkerWorker

Worker

Spark Cluster
Templates

Fig. 1: System Overview

edge deployment. In particular, the data scientist needs an installed city-scale
edge infrastructure along with a deployed big data engine to submit his/her
queries and monitor their performance. However, operators are almost impos-
sible to provide a ready-to-use infrastructure from the beginning of a project.
Thus, users can only evaluate the performance of the analytic queries in a local
virtualized environment or a rented Cloud cluster. This results in an error-prone
performance that may over- or under-estimate the edge capabilities.

Contrary to this approach, users can embrace the SparkEdgeEmu Frame-
work. The high-level overview of the framework is depicted in Figure 1. The on-
boarding starts with the selection of a predefined use case via the framework’s
modeling abstractions, along with the definition of parameters like the number
and the density of edge nodes, processing, and network QoS, which are based on
statistical distributions extracted from real-world deployments [1, 4, 5, 18]. For
instance, for a smart city use case, users select the number of neighborhoods,
the number of compute devices per neighborhood, cloud servers, and their capa-
bilities and connectivity characteristics. Then, users submit the parameterized
model to the platform via the Interactive Programming Interface.

With the parameters at hand, the framework uses the Edge Deployment
Composer (EDC) to construct an in-memory data structure that keeps a set of

Title Suppressed Due to Excessive Length 5

deployable elements, with each element being a materialized view of the user’s
preferences. To do that, the EDC invokes the Infrastructure Use Case Genera-
tor and provides the infrastructure parameters to it. The generator transforms
the parameters into statistically generated edge topologies and returns them to
the EDC. Then, EDC retrieves the Spark Cluster Templates and fills them with
service-level parameters, such as network addresses and node resources. With
both templates and infrastructure descriptions ready, EDC enriches the topolo-
gies with the Apache Spark services, IoT datasets, and placement preferences.
The output of EDC is a statistically generated ready-to-use deployment descrip-
tion. The system propagates the description to the Emulator Connector, which
instantiates the emulated infrastructure, deploys the services, and retrieves both
the emulated infrastructure metrics and metrics from the deployed Spark cluster.
In this paper, we opted not to utilize a distributed storage system such as HDFS
for distributing the IoT datasets. Instead, we introduce a shareable folder on each
node where the framework stores the corresponding IoT data files4. Regarding
Apache Spark services, the framework offers an online repository that contains
docker images which include the required executable artifacts and binaries.

When the emulation is ready and the Spark cluster deployed, the users can
submit analytical tasks through the framework’s Interactive Programming In-
terface. Specifically, users execute the analytical tasks as code blocks via the
programming abstractions, and the system records the starting and ending times-
tamps of the respective code block, which may perform multiple sequential an-
alytic queries. When they are finished, users are aware of the duration of the
queries and retrieve the captured metrics via the Post-query Analysis module.

The Post-query Analysis module requests the underlying infrastructure uti-
lization metrics and big data engine statistics from the Emulator Connector,
filtered by the code block’s starting and ending timestamps. Finally, users may
perform high-level analysis on the retrieved metrics generating a more clear
overview of the submitted queries’ performance.

4 Implementation Aspects

This section presents the framework’s implementation aspects for SparkEdgeEmu
key components.
Modeling Abstractions. There are several emulators that provide high-level
modeling abstractions [19, 16]. However, their users need to describe every sin-
gle compute node and its network connections, which makes the design of a
large-scale deployment challenging. To bridge the gap between scalability and
expressivity, we introduce high-level template-based infrastructure and use case
modeling abstractions. Model 1.1 depicts an example of system’s modeling.
Specifically, the users introduce the types of the devices (devices types) and
connections (connection types). For the devices, users have to specify the name

of the device, the processor’s capabilities (including cores and clock speed),
4 Possible issues regarding storage, like security concerns, are out of our scope. How-
ever, we plan to introduce an emulated distributed storage as a future extension.

6 M. Symeonides et al.

the device’s memory, and the disk capabilities (e.g., technology, size, read &
write throughput, etc.). Moreover, a connection type has an identifier (name),
and uplink & downlink QoS that include data rate, latency, and error rate.

1 i n f r a s t r u c t u r e :
2 devices types :
3 - name: sma l l −vm
4 proce s so r :
5 core s : 4
6 clock speed : 1 . 5 GHz
7 memory: 4GB
8 d i sk :
9 technology : SSD

10 s i z e : 32GB
11 read : 95MB/ s
12 wri te : 90MB/ s
13
14 connect ion types :
15 - name: 5G
16 downlink :
17 data rate : 90MBps
18 l a t ency : 2ms
19 error rate : 0 . 1%
20 upl ink :
21 usecase :
22 usecase type : s m a r t c i t y
23 parameters :
24 num of regions: 3
25 num of devices per region : 7
26 edge devices : [r p i 3 b , nuc]
27 edge connection : 5G
28 c l o ud l e t s : [sma l l −vm]

Model 1.1: Infrastructure & Use Case Parameters

We note that SparkEdgeEmu provides out-of-the-box profiles for popular edge
devices, e.g., raspberries (rpi3b), and connections, e.g., 4G, 5G, and wifi stan-
dards, which users use without having to define them again. Finally, the usecase

primitive materializes a randomized edge deployment. Specifically, use case in-
cludes a usecase type that defines the selected template and a set of parameters,
through which users configure the template. For instance, in Model 1.1, the use
case refers to a smart city template and users set its parameters, such as number
of regions, devices per region and their types, the network type, etc.

Interactive Programming Interface. Next, SparkEdgeEmu users start the
experimentation utilizing a Python-based programming interface (e.g., Code 1.1).
The users execute the SparkEdgeEmu functions locally, while the framework
handles communication with the underlying emulator and the emulated Apache
Spark cluster. For the emulation, users submit the described use case creat-
ing a connector object (lines 1-4), and deploy the use case to the underlying
emulation framework (line 5). In addition, our choice of Python enables us to
leverage PySpark, a Python library that facilitates connectivity to an Apache
Spark cluster. By instantiating an Apache Spark session object, users can submit
their Spark code to the cluster simply by specifying the IP address of the mas-
ter. Within the SparkEdgeEmu programming interface, we have implemented
the “create spark session” function, which generates a session object with a
pre-configured emulated Spark Master IP (lines 7-9). Through this function,

Title Suppressed Due to Excessive Length 7

users identify the Spark connection’s configurations (e.g., executors’ processing
capabilities) and get an Apache Spark session object, which interactively commu-
nicates with the underlying emulated Apache Spark cluster. When users execute
queries in code-blocks under the “with connector.timer()” statement (line 10),
the system captures the duration of their execution. In this way, the system
keeps the starting and ending point of the code block (lines 10-14) and can re-
trieve metrics from this period (line 15). The metrics include statistics from the
deployed Apache Spark queries, e.g., the number of tasks (line 16) and metrics
from the emulated infrastructure, e.g., CPU utilization (line 17).

1 connector = EmulatorConnector(

2 controller_ip = ’...’,

3 usecase = ’usecase.yaml’

4)

5 connector.deploy ()

6
7 spark_session = connector.create_spark_session(

8 app_name = ’app -1’, configs = { ... })

9
10 with connector.timer ():

11 df = spark_session.read.csv(’data.csv’)

12 df.groupBy(’DOLocationID ’) \

13 .agg({’driver_pay ’:’avg’}).collect ()

14

15 monitoring_data = connector.get_metrics ()

16 monitoring_data[’rpi3_b_0 ’].tasks.plot()

17 monitoring_data[’rpi3_b_0 ’].cpu_util.plot()

Code 1.1: Programming Interaction Primitives

Infrastructure Use Case Generator. To materialize the infrastructure gen-
erator, we adopt and extend Ether [18], which is a framework for synthesizing
plausible edge infrastructure configurations from a set of reference use cases,
which are grounded on empirical data, including smart cities [4], Industrial IoT
deployment [5], mobile edge clouds and vehicular networks [1]. Developers can
utilize Ether’s programming primitives and building blocks to create reusable
edge infrastructure configurations and topologies. In our case, the Infrastructure
Generator translates the use case modeling abstractions into Ether’s program-
ming primitives, and Ether creates an in-memory graph keeping all required
information for both networks and compute nodes. However, Ether does not
have all network or compute properties that our system needs. For example,
Ether defines processing power as CPU cycles without considering the number
of cores. For the latter, we extend Ether’s node abstraction to encapsulate also
CPU’s number of cores and clock frequency. Moreover, an Ether-enabled use
case is framed in a geospatial context through which users evaluate the effects
of geographically distributed edge systems. In such a setup, the nodes are dis-
tributed across a region by following a specific distribution, e.g., uniform or log-
normal. Ether generates the respective connectivity for the nodes and produces

8 M. Symeonides et al.

1

2

3

Fig. 2: Ether’s Visualization for Smart City Use Case

the underlying network fabric. We upgrade the latter functionality by introduc-
ing realistic wireless signal quality models for 5G MIMO channels [21]. Figure 2
shows a representation of an auto-generated smart city use case with three neigh-
borhoods and one cloudlet. The placement of nodes in a neighborhood follows
lognormal distribution, as is highlighted in [2, 18], thus, each neighborhood has
a different number of nodes. For instance, rectangle 1○ depicts a neighborhood
with three Intel’s Next Unit of Computing (NUC) nodes [12], while others have
more nodes or include RPi3s. The yellow 2○ and green circles 3○ depict network
components, like switches, and uplink/downlink connections, respectively.
Emulation & Deployment. With the edge topology created, the Edge Topol-
ogy Composer is responsible for the creation of the underlying emulation frame-
work model. Specifically, the system fills the Spark templates with proper param-
eters to generate the Spark services and place them on the auto-generated topol-
ogy. There are two types of templates for a Spark Cluster, one for the master node
and one for the workers’ nodes. In these templates, the Edge Topology Composer
provides properties, like topology nodes’ network addresses, hostnames, other
Spark parameters, etc. When the templates are ready, Edge Topology Composer
explores the in-memory graph of the infrastructure generator, utilizing Ether’s
exploration methods for graph and node-to-node analytics like, node’s properties
identification, uplink and downlink network QoS, link capacity, etc. Thus, the
composer keeps the compute nodes’ capabilities, identifies the network QoS links
among the edge nodes, and forms the underlying emulation model by utilizing
the Emulator Connector.

In our prototype, we create a connector for the Fogify emulation frame-
work [19]. Fogify provides a programmable way to produce its model, multi-host
scalability, and a less than 10% performance difference between emulation and
physical infrastructure. Fogify’s connector creates the emulation model and sub-
mits it through Fogify’s API. Fogify validates the submitted description and
translates the model specification to a running multi-host emulated environ-
ment. The framework utilizes container-based cluster orchestrators (e.g., docker
swarm) to ensure the instantiation, and constraining of the services on the con-
tainerized emulated environment. Moreover, Fogify Agents, which are internal
services of the framework, apply the respective network QoS and monitor the

Title Suppressed Due to Excessive Length 9

emulated instances. To this end, the output is a Spark cluster deployed on the
emulated edge infrastructure that awaits for incoming user’s queries.
Monitoring Metrics. By invoking the emulation connector, SparkEdgeEmu
retrieves monitoring metrics from the underlying emulation topology after the
execution of a batch of analytics queries. Specifically, the Fogify emulator offers
a wide range of infrastructure utilization metrics, including CPU utilization,
memory usage, network traffic, disk I/Os, etc. However, users do not only re-
quire metrics from the underlying infrastructure but also metrics and statistics
from the running big data engine, e.g., the average execution time per task or
the number of assigned tasks for a specific cluster node. Moreover, holistic met-
rics, like the overall execution latency or the overall consumed resources, are
also important for the performance evaluation of analytics queries. For that rea-
son, we extended Fogify’s monitoring system to store metrics from a running
deployed Apache Spark cluster. Specifically, Fogify’s monitoring subsystem peri-
odically polls the internal monitoring API of the deployed Apache Spark cluster
and saves the retrieved measurements. The spark-related metrics refer to each
worker and include (i) assigned, completed, and failed tasks, (ii) JVM memory,
(iii) cached data size, (vi) CPU time, (v) per-task duration, and so on. Finally,
SparkEdgeEmu offers methods for exposing these metrics in a unified manner
through which users can combine, process, and analyze them.

5 Experimental Study

Next, we examine the use case of smart city deployment on Edge computing
topology and analytic queries.
Topology, Workload and IoT Data. For the topology generation, we utilize
the model of the smart city use case as introduced at Model 1.1 and the exem-
plary code snippet of Code 1.1. For the parameters of the use case, we set the
number of neighborhoods equals to 3, the average number of edge devices in each
neighborhood to 7, including Pi4 (4GB), Pi3b+ raspberries, and NVIDIA Jet-
son Nanos. Except for the edge devices, we also introduce a cloudlet server with
8 CPUs@2.4GHz and 8GB memory. The generated topology includes 22 edge
nodes and one cloudlet, with the first neighborhood having 4xRPi4, 2xRPi3b,
and 1xJetson-Nano, the second neighborhood having 1xRPi4, 4xRPi3b, and
3xJetson-Nano, and, finally, the third neighborhood including 1xRPi4, 2xRPi3b,
and 4xJetson-Nano. As a representative dataset, we utilize a publically available
and real-world dataset comprised of For-Hire Vehicle (“FHV”) trip routes in the
first half of 2022 from New York city 5. Each vehicle is equipped with an IoT
tracking device to record 24 metrics for each route, including charged amount,
tip amount, pickup/dropoff location, etc. We set the dataset to be stored and
distributed over the edge nodes, and we submit three analytic queries on it with
their descriptions to be on Table 1. All queries include multiple stages with the
first stage digesting the input IoT data parquet 6 files. Each trial is repeated
10 times with final results depicting the overall measurements of all runs. All
5 https://goo.gl/X9rCpq 6 https://parquet.apache.org/

10 M. Symeonides et al.

Query Description

Q1 The average of payment grouped by the drop-off location

Q2 The number of trips (count) per company

Q3 The overall amount of tips that passengers provided

Table 1: Submitted Queries

Fig. 3: Queries Execution Duration

experiments are conducted with SparkEdgeEmu to be run on a server with
48cores@2.450GHz and 176GB memory.

5.1 Experiments & Results

Code-block Performance Evaluation Differences. Firstly, we evaluated
the performance of the queries (Table 1) deployed on the emulated topology. We
examine each separate query but also all queries together as a code-block. Fur-
thermore, we examine also how the data fetching influences the performance of
the deployed queries. To evaluate the latter, we re-fetch the data at the beginning
of each code-block execution, while to avoid the re-fetching, we retrieve the data
once and keep them in memory. Figure 3 illustrates the average execution time
of ten runs of each configuration. We observe that the execution time follows
the same order (Q1>Q2>Q3) independently of the data-fetching approach. If we
evaluate the semantics of the queries, we easily recognize that the Q1 is a group-
by query that performs average, while Q2 is again a group-by query but only
counts the data points. Intuitively, the averaging of a batch of data is heavier
than a simple count. Furthermore, the group-by is performed in a different field,
with the cardinality of drop-off locations being much higher than the number of
car-sharing companies. For similar reasons, it is reasonable Q3 to be the most
light-weight query in execution. According to the data fetching, it influences
the execution time in all experiments with an average overhead of about 25%.
The latter indicates that Apache Spark does not identify possible optimizations
in data-fetching during the repeatable executions and users should be aware of
that. In conclusion, SparkEdgeEmu Framework helps in performance analysis
and performance bottleneck identification. During the experimentation, we high-
light that the performance of group-by queries is characterized by the number of
key elements and aggregation function, while Apache Spark seems to be unaware
of data re-fetching and re-computations.

Title Suppressed Due to Excessive Length 11

Fig. 4: CPU-related Metrics of the Experiment

For the rest of the experiments, we use metrics captured from the execution
of all queries without data re-fetching.
CPU & Analytic Tasks. SparkEdgeEmu helps users to identify also the work-
load placement and nodes’ utilization of the underlying cluster through its wide
range of monitoring metrics. For instance, Figure 4 depicts three bar charts
from workload-related metrics, namely, the emulated node CPU utilization, the
assigning tasks of Apache spark, and the cumulative duration in seconds that
Apache Spark considers. Interestingly, we observe that the cloudlet VM was un-
derutilized during the experimentation even if Apache Spark was assigned to it
for most of the tasks. Moreover, Spark measured that cloudlet workers spent
much more CPU time (Duration Seconds) than edge devices. As benchmark-
ing efforts have already identified [10], distributed processing big data engines
tend to assign more tasks to more powerful nodes, while these nodes usually are
underutilized in Edge topologies.
Memory Consumption. Another metric that influences the performance of
the Apache Spark cluster is the consumed memory of the cluster’s nodes. Figure
5 illustrates the consumed memory in bytes (x108) and the utilization percent-
age for every emulated node. We have to note here that we keep the default
Apache Spark parameters in all experiments, so the default memory that an
engine’s worker can utilize is 1GB. One can clearly identify that all nodes have
about 700-750MB occupied memory except for raspberries 3b which have about
400-500MB. Since RPi3b has only 1GB of memory, the average percentage of

12 M. Symeonides et al.

(x100MBs)

Fig. 5: Memory-related metrics of the Experiment

occupied memory is 40% for this device. In summary, Apache Spark occupied
less memory on edge memory-constrained devices, even if it assigns to them a
similar number of tasks as the other Edge nodes (Fig. 4).
Network Traffic & Shuffling Data. Figure 6 depicts network-related data
extracted from both emulated infrastructure and Apache Spark cluster. Specifi-
cally, the first plot highlights the network traffic (both incoming and outgoing) in
bytes (x107), while the second and the third plot illustrate the bytes generated
from Spark’s Shuffling Read and Write, respectively. Apache Spark generates
shuffling data among different stages (usually when join or group operator is
performed). So, the Shuffle Write metric illustrates how many bytes are gen-
erated from a local stage and should be transferred to another operator, while
Shuffle Read metric is how many bytes are consumed by the current worker. An
interesting observation is that the size of the network traffic captured by the
emulator is higher than the traffic between the stages captured by the Apache
Spark engine. The extra traffic among the cluster nodes could be health-check
and the task-assigning messages that the engine uses to keep the cluster and
processing alive. To this end, the health-check and the task-assigning messages
contribute a non-negligible extra overhead in network traffic.

6 Conclusion & Future Work

In this paper, we introduce SparkEdgeEmu, an interactive framework that facil-
itates in performance evaluation and assessment of analytic processing on Edge-
enabled Apache Spark clusters. It provides a unified interface through which data
analysts can: (i) create auto-generated scenario-based Edge topologies, (ii) ma-
terialize the topologies into a real-time emulation with a deployed Apache Spark
cluster, (iii) submit analytic tasks and observe its results, (iv) inspect and moni-

Title Suppressed Due to Excessive Length 13

N
et

w
or

k
Tr

af
fic

(m
bi

ts
)

10

5

0
Sh

uf
fle

 R
ea

d
(k

bi
ts

)

40

60

0

20

Sh
uf

fle
 R

ea
d

(k
bi

ts
) 40

0

20

Fig. 6: Network-related metrics of the Experiment

tor the execution of the map-reduce tasks, and (v) perform post-experimentation
analysis on the captured measurements. Furthermore, we provided implemen-
tation details about the framework’s programming abstractions, infrastructure
generation, underlying emulation, and monitoring metrics extraction. Finally,
we evaluated the useability of our approach via a representative city-scale use
case and performed a wide analysis of IoT data and deployment performance.
Future Work. We plan to add more underlying emulators and test their accu-
racy by comparing them to real-world deployments. To evaluate them properly,
we’ll deploy edge devices in different locations, install Apache Spark on them,
and collect utilization and performance metrics. Next, we will use the same pa-
rameters in our system and compare the metrics we collected with the emulated
results. Moreover, to enhance the realism of our deployment, we plan to replace
the data shareable folder with a distributed storage emulation, such as HDFS.

References

1. 5G Automotive Association: C-ITS vehicle to infrastructure services: How C-V2X
technology completely changes the cost equation for road operators. White pa-
per 2019.

2. Austria, S.: Federal ministry for climate action, environment, energy, mobility,
innovation and technology. https://www.senderkataster.at/

3. Beilharz, J., Wiesner, P., Boockmeyer, A., Brokhausen, F., Behnke, I., Schmid, R.,
Pirl, L., Thamsen, L.: Towards a staging environment for the internet of things. In:

14 M. Symeonides et al.

2021 IEEE International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops). pp. 312–315 (2021)

4. Catlett, C.E., Beckman, P.H., Sankaran, R., Galvin, K.K.: Array of things: A
scientific research instrument in the public way: Platform design and early lessons
learned. In: Proceedings of the 2nd International Workshop on Science of Smart
City Operations and Platforms Engineering. p. 26–33. ACM (2017)

5. Chen, B., Wan, J., Celesti, A., Li, D., Abbas, H., Zhang, Q.: Edge computing in
iot-based manufacturing. IEEE Communications Magazine 56(9), 103–109 (2018)

6. Chintapalli, S., Dagit, D., Evans, B., Farivar, R., Graves, T., Holderbaugh, M.,
Liu, Z., Nusbaum, K., Patil, K., Peng, B.J., Poulosky, P.: Benchmarking streaming
computation engines: Storm, flink and spark streaming. In: IEEE IPDPSW (2016)

7. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with ycsb. In: SoCC. ACM (2010)

8. Coutinho, A., Greve, F., Prazeres, C., Cardoso, J.: Fogbed: A rapid-prototyping
emulation environment for fog computing. In: IEEE ICC (May 2018)

9. Dignan., L.: Iot devices to generate 79.4zb of data in 2025, says idc, 2019. https:
//bit.ly/3MVTY15

10. Georgiou, J., Symeonides, M., Kasioulis, M., Trihinas, D., Pallis, G., Dikaiakos,
M.D.: Benchpilot: Repeatable & reproducible benchmarking for edge micro-dcs.
In: Proceedings of the 27th IEEE ISCC (2022)

11. Hasenburg, J., Grambow, M., Bermbach, D.: Mockfog 2.0: Automated execution
of fog application experiments in the cloud. IEEE TCC 11(01), 1–1 (apr 2021)

12. Intel: Intel nuc for edge compute. https://www.intel.com/content/www/us/en/
products/docs/boards-kits/nuc/edge-compute.html

13. Karimov, J., Rabl, T., Katsifodimos, A., Samarev, R., Heiskanen, H., Markl, V.:
Benchmarking distributed stream data processing systems. In: IEEE ICDE (2018)

14. Lantz, B., Heller, B., Mckeown, N.: A network in a laptop: Rapid prototyping for
software-defined networks. In: In ACM SIGCOMM HotNets Workshop (2010)

15. Li, M., Tan, J., Wang, Y., Zhang, L., Salapura, V.: Sparkbench: A comprehen-
sive benchmarking suite for in memory data analytic platform spark. In: ACM
International Conference on Computing Frontiers (2015)

16. Nikolaidis, F., Chazapis, A., Marazakis, M., Bilas, A.: Frisbee: A suite for bench-
marking systems recovery. In: Proceedings of the 1st Workshop on High Availability
and Observability of Cloud Systems. HAOC (2021)

17. Rathijit, S., Abhishek, R., Alekh, J.: Predictive Price-Performance Optimization
for Serverless Query Processing. International Conference on Extending Database
Technology, EDBT (2023)

18. Rausch, T., Lachner, C., Frangoudis, P.A., Raith, P., Dustdar, S.: Synthesizing
plausible infrastructure configurations for evaluating edge computing systems. In:
3rd USENIX Workshop on Hot Topics in Edge Computing (HotEdge 20). USENIX
Association (Jun 2020)

19. Symeonides, M., Georgiou, Z., Trihinas, D., Pallis, G., Dikaiakos, M.D.: Fogify: A
fog computing emulation framework. In: IEEE/ACM SEC (2020)

20. Symeonides, M., Trihinas, D., Georgiou, Z., Pallis, G., Dikaiakos, M.: Query-Driven
Descriptive Analytics for IoT and Edge Computing. In: Proceedings of IEEE In-
ternational Conference on Cloud Engineering (IC2E 2019) (2019)

21. Symeonides, M., Trihinas, D., Pallis, G., Dikaiakos, M.D., Psomas, C., Krikidis, I.:
5g-slicer: An emulator for mobile iot applications deployed over 5g network slices.
In: IEEE/ACM IoTDI (2022)

22. Zeng, Y., Chao, M., Stoleru, R.: Emuedge: A hybrid emulator for reproducible and
realistic edge computing experiments. In: IEEE ICFC (2019)

View publication stats

https://www.researchgate.net/publication/373358188

